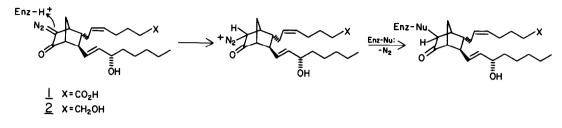

THE SYNTHESIS OF A 3-DIAZOBICYCLO[2.2.1]HEPTAN-2-ONE INHIBITOR OF THROMBOXANE A2 SYNTHETASE

Jerry L. Adams* and Brian W. Metcalf Merrell Dow Research Institute Merrell Dow Pharmaceuticals Inc. 2110 East Galbraith Road Cincinnati, Ohio 45215

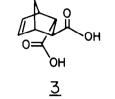
Abstract: The synthesis of a PGH, analog, 5-endo(2Z), 6-exo(1E)-3-diazo-5-(7-hydroxy-2-heptenyl)-6-(3-hydroxy-1-octenyl)bicyclo[2.2.1]heptan-2-one <u>2</u> is described.

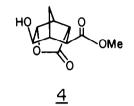

Thromboxane A_2 (TXA₂) is a physiologically important metabolite of arachidonic acid and may play a significant role in the development of several diseases.¹ If so, compounds which inhibit the synthesis of TXA₂ may be important therapeutic agents. This paper describes the synthesis of the diazoketone <u>2</u> which was designed to be an enzyme-activated, irreversible inhibitor of TXA₂ synthetase.

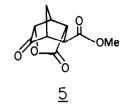
Although the mechanism for the isomerization of PGH_2 to TXA_2 is not known, the reaction is assumed to be initiated by a regiospecific protonation of the peroxy bridge which induces a Wagner-Meerwein type rearrangement (Scheme I). Subsequent loss of the initiating electrophile affords TXA_2 . Consideration of this mechanism led us to propose the diazoketone <u>1</u> as a potential suicide inhibitor of TXA_2 synthetase. Protonation of <u>1</u> by the enzyme in a manner analogous to that of the normal substrate would create a reactive alkylating reagent which could trap an enzyme-bound nucleophile and thereby inactivate the enzyme (Scheme II). The utility of diazocarbonyl compounds as suicide inhibitors has been demonstrated for the natural product azaserine^{2a} and for a diazosteroid.^{2b,c} In both cases these compounds are believed to function in a manner similar to that proposed for <u>1</u>.

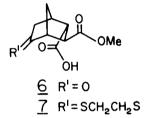
Scheme I

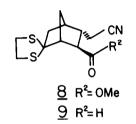
As a matter of synthetic and practical expediency we chose the alcohol $\underline{2}$ as our target to test this proposal. Since several procedures exist for the introduction of a diazo moiety alpha to a ketone, we expected that a suitably protected form of the ketone $\underline{15}$ would serve as a precursor to $\underline{2}$.

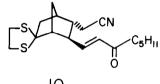


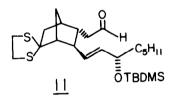

Scheme II

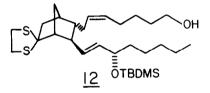

Oxidative cyclization of the diacid $\underline{3}^3$ employing peroxyformic acid followed by esterification affords lactone 4^4 (85%, m.p. 141°-142°). The RuO₄-NaIO₄ oxidation of 4^5 proceeds cleanly in aqueous acetone to a mixture of ketone 5^4 and its hydrate (90%). Reduction (zinc, acetic acid) of keto-lactone 5 to yield 6^4 serves to differentiate the carboxyl moieties and thereby facilitate elaboration of the two side chains. The ketone was then protected as the dithiolane $\underline{7}^4$ (BF₃·Et₂0, ethanedithiol, acetic acid, 65% from <u>5</u>, m.p. 157-159°). Homologation of the acid $\frac{7}{1}$ to the nitrile 8^4 is best accomplished using a three step sequence of reduction (BH₂·SMe₂, THF), tosylation (TsCl, pyridine), and nucleophilic displacement (KCN, DMSO, 70°, 24 hr., 61⁷/₈ yield from 7 following HPLC, m.p. 69-72°). The aldehyde 9⁴ derived from 8 [1) NaOH-MeOH, 2) BH₃·SMe₂-THF, 3) Swern oxidation, 78%⁶, m.p. 96-97°] undergoes the Emmons-Wadsworth reaction with dimethyl 2-oxoheptylphosphonate (NaH, glyme, 0°, 15 min.) to afford the pure trans enone 10^4 as an oil in 89% yield following HPLC purification to remove a few percent of the cis isomer. Reduction of the enone employing $NaBH_4$ -CeCl₃ in methanol⁷ provides a mixture of diastereomeric alcohols which were separated by HPLC (44% yield of each diasteromer). 8 The higher Rf diastereomer was assigned the natural "15-S" configuration. 9 The allylic alcohol was protected as its t-butyldimethylsilyl ether (TBDMSCl, DMAP, Et₂N, DMF, 25°) and reduced with diisobutylaluminum hydride to afford the aldehyde 11^4 (70%⁶).

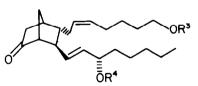

The remaining carbon skeleton was attached by reaction of <u>11</u> with the ylide derived from (5-hydroxypentyl)triphenylphosphonium bromide and 2 equivalents of n-BuLi in THF/HMPA (2/1) to provide the cis olefin <u>12⁴</u> (80%⁶). If HMPA is not employed a 6/4 ratio of cis/trans olefins is obtained (determined by ¹³C NMR and capillary GC). The standard conditions of DMSO-potassium t-butoxide gave <u>12</u> stereochemically pure, but in low yield. Removal of the dithiolane (MeI, $CaCO_3$, CH₃CN, H₂O, 75°, 4 hr.) affords the ketone <u>13¹⁰</u> in 70% yield⁶.

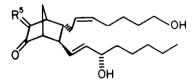

Following conversion of <u>13</u> to its bis-t-butyldimethylsilyl ether <u>14</u>, we were ready to examine methods for the introduction of the diazo function. We initially planned to introduce the diazo group employing a diazo transfer reaction.¹¹ However reaction of the formyl ketone derived from <u>14</u> and p-toluenesulfonylazide-Et₃N in CH₂Cl₂ failed to yield isolable amounts of the desired diazoketone. Likewise the direct diazo transfer using <u>14</u> or <u>15</u> and 2,4,6-triisopropylsulfonyl azide was not successful.¹² Fortunately oxidation of the mixture of <u>syn</u> and <u>anti</u> keto-oximes <u>16</u> (prepared from <u>14</u>, 10 eq. potassium t-butoxide, 4 eq. amyl nitrite, t-butanol followed by pyridinium tosylate, ethanol, $60\%^6$ from <u>13</u>) employing chloramine (NaOCl, NH₄OH, NaOH, THF, 0°, 30 min.) affords the target diazoketone <u>2</u> [IR (film) \vee 2080, 1675, 1360;











<u>13</u> R³=H,R⁴=TBDMS <u>14</u> R³=R⁴=TBDMS <u>15</u> R³=R⁴=H

<u>16</u> R⁵=NOH <u>2</u> R⁵=N₂

NMR (CDCl₃) δ 0.8-2.4 (m, 25H), 2.47 (br s, 1H, H₁), 3.35 (br s, 1H, H₄), 3.60 (t, 2H, J=6Hz, CH₂OH), 4.00 (m, 1H, CHOH), 5.2-5.7 (m, 4H, olefinic H)]¹³ in 30% yield⁶.

Both compound 2 and 16 are moderately good non-time-dependent inhibitors of thromboxane synthetase($IC_{50} = 20 \mu M$).¹⁴

REFERENCES AND NOTES

- 1. S. Moncada and J.R. Vane, Pharmacological Reviews, 30, pp. 293 (1979).
- a) J.M. Buchanan, in "Enzyme Activated Inhibitors", Elsevier/North-Holland Biomedical Press, N. Seiler, M.J. Jung and J. Koch-Weser, eds., pp. 277 (1978).
 b) B.W. Metcalf, K. Jund and J.P. Burkhart, <u>Tetrahedron Lett.</u>, <u>21</u>, pp. 15 (1980).
 c) T.R. Blohm, B.W. Metcalf, M.E. Laughlin, A. Sjoerdsma and G.L. Schatzman, <u>Biochem.</u> <u>Biophys, Res. Commun.</u>, <u>95</u>, pp. 273 (1980).
- 3. H. Koch, J. Kotlan and H. Markut, Monatsh. Chem., 96, pp. 1646 (1965).
- 4. Structural assignment supported by NMR, IR, and correct elemental analysis.
- 5. H. Gopal, T. Adams, R.M. Moriarty, Tetrahedron, 28, pp. 4259 (1972).
- 6. Isolated yields after purification by flash chromatography on silica gel.
- 7. J.-L. Luche, L. Rodriguez-Hahn and P. Crabbé, <u>J.C.S. Chem. Comm.</u>, pp. 601 (1978).
- The lower Rf diastereomer was converted to higher Rf diastereomer by esterification with inversion (diethyl diazodicarboxylate, triphenylphosphine, benzoic acid, THF) followed by saponification (NaOH, MeOH) in 60% yield.
- 9. Upon conversion to <u>13</u> the relative Rf of the diastereomers is reversed; the final product <u>2</u> is the lower Rf diastereomer. For a similar example see E.J. Corey <u>et al.</u>, <u>Tetrahedron</u> <u>Lett.</u>, pp. 737 (1976).
- 10. Compound $\underline{13}^4$ was further characterized as the diol $\underline{15}$.⁴ The ¹³C NMR of $\underline{15}$, which exhibited no significant impurities, is: (CDCl₃) δ 13.6, 22.2, 24.7, 25.4, 26.6, 28.6, 31.3, 31.8, 35.8, 36.9, 38.6 (two carbons), 46.2, 46.5, 56.2, 62.0, 72.0, 127.2, 130.3, 131.3, 132.8, 216.9.
- M. Regitz, F. Menz, <u>Chem. Ber.</u>, <u>101</u>, pp. 2622 (1968) and M. Regitz, J. Rüter, <u>Chem. Ber.</u>, <u>101</u>, pp. 1263 (1968).
- 12. L. Lombardo and L.N. Mander, Synthesis, pp. 368 (1980).
- See P. Yates and G.F. Hambly, <u>Can. J. Chem.</u>, <u>57</u>, pp. 1656 (1979) for the characterization of related 3-diazobicyclo[2.2.1]heptan-2-ones.
- 14. We wish to thank Dr. T.R. Blohm and Mr. G. Schatzman for the enzyme test results.

(Received in USA 7 November 1983)